数据科学中的数学方法

数据科学中的数学方法

Mathematical Methods in Data Science

学科领域

数学与统计

审稿周期

7个工作日

出版周期

半年 6/12

ISSN

准备中

创刊年份

出版社

日本二言語出版株式会社

收录数据库

出版费用

USD

期刊简介

Aim Mathematical Methods in Data Science (MMDS) is an interdisciplinary, peer-reviewed academic journal dedicated to advancing the foundational role of mathematics in driving innovation and rigor in data science. Its core aim is to bridge the gap between mathematical theory and real-world data science applications, publishing high-quality research that develops, refines, or applies mathematical frameworks to address complex data-centric challenges. The journal seeks to foster scholarly dialogue across mathematics, statistics, computer science, and domain-specific fields (e.g., engineering, biology, finance), with the goal of enhancing the theoretical depth, methodological robustness, and practical impact of data science. Additionally, it aims to serve as a resource for researchers, practitioners, and educators—supporting the adoption of rigorous mathematical approaches to solve emerging data problems and shaping the future direction of data science as a discipline. Scope The journal encompasses a broad range of topics that integrate mathematical methods with data science, including but not limited to: Foundational mathematical frameworks for data science: Linear and nonlinear algebra, calculus of variations, optimization theory (e.g., convex/non-convex optimization, stochastic optimization), probability theory, and mathematical statistics (e.g., Bayesian inference, hypothesis testing, statistical learning theory) as applied to data analysis. Machine learning and deep learning: Mathematical foundations of supervised/unsupervised/reinforcement learning; theoretical analysis of neural networks (e.g., convergence, generalization, robustness); mathematical modeling of deep learning architectures (e.g., transformers, graph neural networks). Data representation and dimensionality reduction: Mathematical methods for feature extraction, manifold learning, sparse representation, and low-rank matrix/tensor decomposition; their application to high-dimensional data (e.g., image, text, sensor data). Uncertainty quantification and robustness: Mathematical approaches to modeling and mitigating uncertainty in data (e.g., probabilistic programming, fuzzy logic, robust statistics); analysis of data science models under noise, missing data, or adversarial perturbations. Graph theory and network data science: Mathematical modeling of graph-structured data (e.g., social networks, biological networks); methods for network analysis (e.g., centrality measures, community detection, graph embedding) using combinatorics, algebraic graph theory, or topological data analysis. Time series and spatio-temporal data: Mathematical methods for time series forecasting (e.g., differential equations, autoregressive models, wavelet analysis); spatio-temporal data modeling (e.g., Gaussian processes, geostatistics) for applications in climate science, epidemiology, or urban analytics. Domain-specific applications: Mathematical data science methods tailored to fields such as computational biology (e.g., genomic data analysis), finance (e.g., risk modeling, algorithmic trading), engineering (e.g., signal processing, computer vision), and environmental science (e.g., climate data assimilation).

征稿范围

投稿指南

论文格式要求

论文应包含摘要、关键词、引言、研究方法、研究结果、讨论和参考文献等部分。英文论文要求语言流畅,符合学术写作规范。

发表流程

  1. 作者投稿
  2. 初步审核
  3. 专家评审 (3天)
  4. 修改与校对
  5. 支付出版费用 (400 美元)
  6. 在线发表
  7. 数据库检索 (中国知网)

相关期刊

Forum for Philosophical Studies

ISSN: XX 学科: 社会科学与公共管理 收录数据库:

Ecomaterials

ISSN: eISSN: 2811-0242 学科: 环境科学与可持续发展 收录数据库:

World Economy and Intelligent Management

ISSN: XX 学科: 经济与管理 收录数据库:

Microecology

ISSN: XX 学科: 医药卫生与生命科学 收录数据库:
创意治疗

Creative Therapeutic

创意治疗

ISSN: 3050-0397(O) 学科: 医药卫生与生命科学 收录数据库:Google Scholar

联系我们

contact@globalabp.com
+86 010-12345678

服务流程

专业高效的服务流程,为您的论文发表保驾护航

论文评估

我们的专业编辑团队将对您的论文进行全面评估,确定最适合的期刊选择和修改建议。

1
2

期刊推荐

基于您的研究领域和论文内容,我们将推荐最匹配的期刊,提高论文被接收的概率。

论文润色

专业编辑将对您的论文进行语言润色和格式调整,确保符合目标期刊的要求。

3
4

投稿协助

我们将协助您完成投稿过程,确保所有材料准备齐全,按要求提交。

跟踪反馈

实时跟踪审稿进度,及时反馈修改意见,协助您完成论文修改和最终发表。

5

服务优势

我们的专业团队为您提供全方位的学术服务支持

专业团队

由高校教授、资深编辑、行业专家组成的专业团队,确保服务质量

高录用率

丰富的期刊合作资源,提供精准期刊推荐,大幅提高论文录用概率

高效服务

3天快速审稿服务,及时反馈修改意见,加速论文发表进程

常见问题

解答您在论文发表过程中可能遇到的疑问

0.040314s